Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation
نویسندگان
چکیده
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.
منابع مشابه
In Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملMYB10 and MYB72 Are Required for Growth under Iron-Limiting Conditions
Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours afte...
متن کاملPasteurella multocida gene expression in response to iron limitation.
Pasteurella multocida is the causative agent of a wide range of diseases in avian and mammalian hosts. Gene expression in response to low iron conditions was analyzed in P. multocida using whole-genome microarrays. The analysis shows that the expression of genes involved in energy metabolism and electron transport generally decreased 2.1- to 6-fold while that of genes used for iron binding and ...
متن کاملBroadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization
Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...
متن کاملTranscriptomic response of Listeria monocytogenes to iron limitation and Fur mutation.
Iron is required by almost all bacteria, but concentrations above physiological levels are toxic. In bacteria, intracellular iron is regulated mostly by the ferric uptake regulator, Fur, or a similar functional protein. Iron limitation results in the regulation of a number of genes, especially those involved in iron uptake. A subset of these genes is the Fur regulon under the control of Fur. In...
متن کامل